China best 4kw Liquid Ring Vacuum Pump for Extrusion Lines a/c vacuum pump

Product Description

Product Description

SK-A series vacuum pumps are based on SK vacuum pump ,which designed according to plastic machine industry special needs.This kind of pump have solved the problems that when absorbing lots of water,can not work continuously;when scaling seriously for hard water,can not start beause of stopping working for a long time.And widely used on tubing machine and molding machine.Items:SK-0.15A SK-0.3A,SK-0.5A SK-0.8A,SK-1.2A ,SK-2A ,SK-3A.Motor power from 0.55~5.5KW ;Capacity:0.15~3M3/min,Ultimate vacuum:-0.095MPa.

Pump specifications

 Model  

 Motor

 Power

(KW)

  Suction

  capacity

(m³/min)

 Limit vacuum

     

Inlet&Outlet

Speed

 (r/min)

  

 Weight

    (Kg)

       Size

       (mm)

 

(-Mpa)  Torr
SK-0.15A     0.55       0.15 0.095  47   G3/4″ 2825     23.5 381x170x217
SK-0.3A     1.1       0.3 0.095  47  G1″  2840      33 460x180x235
SK-0.5A     1.5       0.5 0.095  47  G1″  2840      34 485x180x235
SK-0.8A     2.2       0.8 0.095  47  G1″  2840

     37

480x185x235
SK-1.2A     3.0       1.2 0.095  47    G1 1/2″    2860     51.5 528x218x260
SK-2A     4.0       2.0 0.095  47   G1 1/2″  2880      63 560x220x286
SK-2C     4.0       2.0 0.098  25   G1 1/2″  2850      63 560x220x286
SK-2D     5.5       2.0 0.095  47   50mm 1440     113 668x340x359
SK-3A     5.5       3.0 0.095  47  G2″ 1440     105 645x310x338
SK-3C     5.5       3.5 0.098  25   G2″ 1440     107 665x310x338
SK-3D     5.5       3.0 0.095  47  50mm 1440     118 688x340x371
SK-3E     5.5       3.5 0.098  25  50mm 1440     120 706x340x371
SK-4.5D     7.5       4.5 0.095  47  66mm 1440     150 800x380x388
SK-4.5E     7.5       4.5 0.098  25  66mm 1440     150 800x380x388
SK-6D     11       6.0 0.095  47  66mm 1460     198 854x380x425
SK-6E     11       6.5 0.098  25  66mm 1460     198 854x380x425

Product’s Application
It is widely used in all kinds of plastic extrusion line;medical and pharmaceutical industry(autoclave,sterilizer,capsule filling machine);EPS foam machine;food-related industry;chemical industry;vacuum filtration;vacuum water diversion;vacuum feeding;vacuum evaporation;vacuum concentration;vacuum reflow;vacuum degassing,etc 

 Packaging & Shipping:

Packaging:

  1. Standard export polywooden cases.

  2. Customized packaging can be available.

Shipping:

Shipping method Note
Express Door to door, very convenient, don’t need customs clearance or pick-up.
By air Airport to airport, you need to do the customs clearance and pick up the goods at your local airport.
By sea Port to port and you need to do the customs clearance and pick-up the goods at your local port.


 

Company Overview
Established in 1986, our company has been focusing on the development and manufacture of vacuum pumps and water pumps.We are a comprehensive pump company integrating production, sales and after-sales maintenance services.

The main products include liquid ring vacuum pumps;rotary vane vacuum pumps;roots vacuum pump;centrifugal water pump and customized vacuum pump system,which are widely used in all kinds of plastic extrusion line;medical and pharmaceutical industry(autoclave sterilizer/capsule filling and sealing machine);food-related industry(beverage machine/milking machine/sugar plant);chemical industry;power plant;coal mine etc.

Our Advantages

1,Direct connected ,simple structure,small volume

2,Impeller material:alloy  copper whole casting (made by ourselves)

3,Pump chamer coating treatment,anti-scalling 

4,Adopt custom anti-corrosion mechanical seal 

5,All motors are certified by CE and manufactured  by self to ensure their quality 

6,We have a complete set of microcomputer controlled testing system (All products are subject to inspection.)

Our Services

Pre-Sales Service

  1. Provide 24-hour reply.

  2. Provide suitable models according to clients’ requirements.

  3. Provide detailed product specifications and reasonal prices. 

In-Sales Service

  1. Supervise whole production time. 

  2. Provide product’s testing performance curve to customers.

  3. Provide inspection pictures to customers after we finish production.

After-Sales Service

  1. Provide installation manual.

  2. Under correct installation, normal maintenance and using,we guarantee one-year warranty.

  3. If product has malfunction,we’ll reply you within 24 hour and provide solution or even send technical staff to spot after receiving maintenance notification.
     

FAQ

1.  Q: Are you a manufacturer or trading company?

    A: We are manufacturer of vacuum pumps and water pumps in China since 1986.

2.  Q: What’s your MOQ?

    A: One set is ok.

3.  Q: What’s your payments terms?

    A: T/T, Western Union……

4.  Q: What certificates do you have?

    A: CE, ISO 9001 ….

5.  Q: How about the warranty?

    A: 12 months warranty since delivery.

6.  Q: What’s the delivery time?

    A: For different models,different motor specs and different material,delivery time is different,please double confirm with our sales team.

7.  Q: Can you do OEM brand?

    A: Yes, welcome.

8.  Q: Quality reliable?

    A: We have whole testing system controlled by micro-machine,testing performance curve can be sent to clients before arrange delivery.

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: One Year
Oil or Not: Oil Free
Structure: Reciprocating Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Work Function: Mainsuction Pump
Customization:
Available

|

vacuum pump

How Are Vacuum Pumps Employed in the Production of Electronic Components?

Vacuum pumps play a crucial role in the production of electronic components. Here’s a detailed explanation:

The production of electronic components often requires controlled environments with low or no atmospheric pressure. Vacuum pumps are employed in various stages of the production process to create and maintain these vacuum conditions. Here are some key ways in which vacuum pumps are used in the production of electronic components:

1. Deposition Processes: Vacuum pumps are extensively used in deposition processes, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), which are commonly employed for thin film deposition on electronic components. These processes involve the deposition of materials onto substrates in a vacuum chamber. Vacuum pumps help create and maintain the necessary vacuum conditions required for precise and controlled deposition of the thin films.

2. Etching and Cleaning: Etching and cleaning processes are essential in the fabrication of electronic components. Vacuum pumps are used to create a vacuum environment in etching and cleaning chambers, where reactive gases or plasmas are employed to remove unwanted materials or residues from the surfaces of the components. The vacuum pumps help evacuate the chamber and ensure the efficient removal of byproducts and waste gases.

3. Drying and Bake-out: Vacuum pumps are utilized in the drying and bake-out processes of electronic components. After wet processes, such as cleaning or wet etching, components need to be dried thoroughly. Vacuum pumps help create a vacuum environment that facilitates the removal of moisture or solvents from the components, ensuring their dryness before subsequent processing steps. Additionally, vacuum bake-out is employed to remove moisture or other contaminants trapped within the components’ materials or structures, enhancing their reliability and performance.

4. Encapsulation and Packaging: Vacuum pumps are involved in the encapsulation and packaging stages of electronic component production. These processes often require the use of vacuum-sealed packaging to protect the components from environmental factors such as moisture, dust, or oxidation. Vacuum pumps assist in evacuating the packaging materials, creating a vacuum-sealed environment that helps maintain the integrity and longevity of the electronic components.

5. Testing and Quality Control: Vacuum pumps are utilized in testing and quality control processes for electronic components. Some types of testing, such as hermeticity testing, require the creation of a vacuum environment for evaluating the sealing integrity of electronic packages. Vacuum pumps help evacuate the testing chambers, ensuring accurate and reliable test results.

6. Soldering and Brazing: Vacuum pumps play a role in soldering and brazing processes for joining electronic components and assemblies. Vacuum soldering is a technique used to achieve high-quality solder joints by removing air and reducing the risk of voids, flux residuals, or oxidation. Vacuum pumps assist in evacuating the soldering chambers, creating the required vacuum conditions for precise and reliable soldering or brazing.

7. Surface Treatment: Vacuum pumps are employed in surface treatment processes for electronic components. These processes include plasma cleaning, surface activation, or surface modification techniques. Vacuum pumps help create the necessary vacuum environment where plasma or reactive gases are used to treat the component surfaces, improving adhesion, promoting bonding, or altering surface properties.

It’s important to note that different types of vacuum pumps may be used in electronic component production, depending on the specific process requirements. Commonly used vacuum pump technologies include rotary vane pumps, turbo pumps, cryogenic pumps, and dry pumps.

In summary, vacuum pumps are essential in the production of electronic components, facilitating deposition processes, etching and cleaning operations, drying and bake-out stages, encapsulation and packaging, testing and quality control, soldering and brazing, as well as surface treatment. They enable the creation and maintenance of controlled vacuum environments, ensuring precise and reliable manufacturing processes for electronic components.

vacuum pump

How Do Vacuum Pumps Contribute to Energy Savings?

Vacuum pumps play a significant role in energy savings in various industries and applications. Here’s a detailed explanation:

Vacuum pumps contribute to energy savings through several mechanisms and efficiencies. Some of the key ways in which vacuum pumps help conserve energy are:

1. Improved Process Efficiency: Vacuum pumps are often used to remove gases and create low-pressure or vacuum conditions in industrial processes. By reducing the pressure, vacuum pumps enable the removal of unwanted gases or vapors, improving the efficiency of the process. For example, in distillation or evaporation processes, vacuum pumps help lower the boiling points of liquids, allowing them to evaporate or distill at lower temperatures. This results in energy savings as less heat is required to achieve the desired separation or concentration.

2. Reduced Energy Consumption: Vacuum pumps are designed to operate efficiently and consume less energy compared to other types of equipment that perform similar functions. Modern vacuum pump designs incorporate advanced technologies, such as variable speed drives, energy-efficient motors, and optimized control systems. These features allow vacuum pumps to adjust their operation based on demand, reducing energy consumption during periods of lower process requirements. By consuming less energy, vacuum pumps contribute to overall energy savings in industrial operations.

3. Leak Detection and Reduction: Vacuum pumps are often used in leak detection processes to identify and locate leaks in systems or equipment. By creating a vacuum or low-pressure environment, vacuum pumps can assess the integrity of a system and identify any sources of leakage. Detecting and repairing leaks promptly helps prevent energy wastage associated with the loss of pressurized fluids or gases. By addressing leaks, vacuum pumps assist in reducing energy losses and improving the overall energy efficiency of the system.

4. Energy Recovery Systems: In some applications, vacuum pumps can be integrated into energy recovery systems. For instance, in certain manufacturing processes, the exhaust gases from vacuum pumps may contain heat or have the potential for energy recovery. By utilizing heat exchangers or other heat recovery systems, the thermal energy from the exhaust gases can be captured and reused to preheat incoming fluids or provide heat to other parts of the process. This energy recovery approach further enhances the overall energy efficiency by utilizing waste heat that would otherwise be lost.

5. System Optimization and Control: Vacuum pumps are often integrated into centralized vacuum systems that serve multiple processes or equipment. These systems allow for better control, monitoring, and optimization of the vacuum generation and distribution. By centralizing the vacuum production and employing intelligent control strategies, energy consumption can be optimized based on the specific process requirements. This ensures that vacuum pumps operate at the most efficient levels, resulting in energy savings.

6. Maintenance and Service: Proper maintenance and regular servicing of vacuum pumps are essential for their optimal performance and energy efficiency. Routine maintenance includes tasks such as cleaning, lubrication, and inspection of pump components. Well-maintained pumps operate more efficiently, reducing energy consumption. Additionally, prompt repair of any faulty parts or addressing performance issues helps maintain the pump’s efficiency and prevents energy waste.

In summary, vacuum pumps contribute to energy savings through improved process efficiency, reduced energy consumption, leak detection and reduction, integration with energy recovery systems, system optimization and control, as well as proper maintenance and service. By utilizing vacuum pumps efficiently and effectively, industries can minimize energy waste, optimize energy usage, and achieve significant energy savings in various applications and processes.

vacuum pump

Can Vacuum Pumps Be Used in Laboratories?

Yes, vacuum pumps are extensively used in laboratories for a wide range of applications. Here’s a detailed explanation:

Vacuum pumps are essential tools in laboratory settings as they enable scientists and researchers to create and control vacuum or low-pressure environments. These controlled conditions are crucial for various scientific processes and experiments. Here are some key reasons why vacuum pumps are used in laboratories:

1. Evaporation and Distillation: Vacuum pumps are frequently used in laboratory evaporation and distillation processes. By creating a vacuum, they lower the boiling point of liquids, allowing for gentler and more controlled evaporation. This is particularly useful for heat-sensitive substances or when precise control over the evaporation process is required.

2. Filtration: Vacuum filtration is a common technique in laboratories for separating solids from liquids or gases. Vacuum pumps create suction, which helps draw the liquid or gas through the filter, leaving the solid particles behind. This method is widely used in processes such as sample preparation, microbiology, and analytical chemistry.

3. Freeze Drying: Vacuum pumps play a crucial role in freeze drying or lyophilization processes. Freeze drying involves removing moisture from a substance while it is in a frozen state, preserving its structure and properties. Vacuum pumps facilitate the sublimation of frozen water directly into vapor, resulting in the removal of moisture under low-pressure conditions.

4. Vacuum Ovens and Chambers: Vacuum pumps are used in conjunction with vacuum ovens and chambers to create controlled low-pressure environments for various applications. Vacuum ovens are used for drying heat-sensitive materials, removing solvents, or conducting reactions under reduced pressure. Vacuum chambers are utilized for testing components under simulated space or high-altitude conditions, degassing materials, or studying vacuum-related phenomena.

5. Analytical Instruments: Many laboratory analytical instruments rely on vacuum pumps to function properly. For example, mass spectrometers, electron microscopes, surface analysis equipment, and other analytical instruments often require vacuum conditions to maintain sample integrity and achieve accurate results.

6. Chemistry and Material Science: Vacuum pumps are employed in numerous chemical and material science experiments. They are used for degassing samples, creating controlled atmospheres, conducting reactions under reduced pressure, or studying gas-phase reactions. Vacuum pumps are also used in thin film deposition techniques like physical vapor deposition (PVD) and chemical vapor deposition (CVD).

7. Vacuum Systems for Experiments: In scientific research, vacuum systems are often designed and constructed for specific experiments or applications. These systems can include multiple vacuum pumps, valves, and chambers to create specialized vacuum environments tailored to the requirements of the experiment.

Overall, vacuum pumps are versatile tools that find extensive use in laboratories across various scientific disciplines. They enable researchers to control and manipulate vacuum or low-pressure conditions, facilitating a wide range of processes, experiments, and analyses. The choice of vacuum pump depends on factors such as required vacuum level, flow rate, chemical compatibility, and specific application needs.

China best 4kw Liquid Ring Vacuum Pump for Extrusion Lines   a/c vacuum pump		China best 4kw Liquid Ring Vacuum Pump for Extrusion Lines   a/c vacuum pump
editor by Dream 2024-04-23